\(\int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [157]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 90 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(1+i) \sqrt {a} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}} \]

[Out]

(1+I)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d-2*A*(a+I*a*tan(d*x+c)
)^(1/2)/d/tan(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {3679, 12, 3625, 211} \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(1+i) \sqrt {a} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}} \]

[In]

Int[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

((1 + I)*Sqrt[a]*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*A*
Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3679

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*
(n + 1)*(c^2 + d^2))), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 A \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}+\frac {2 \int \frac {a (i A+B) \sqrt {a+i a \tan (c+d x)}}{2 \sqrt {\tan (c+d x)}} \, dx}{a} \\ & = -\frac {2 A \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}+(i A+B) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx \\ & = -\frac {2 A \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}+\frac {\left (2 a^2 (A-i B)\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = \frac {(1+i) \sqrt {a} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.95 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.13 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {2} (A-i B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}-2 A \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}} \]

[In]

Integrate[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

(Sqrt[2]*(A - I*B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]]
 - 2*A*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 277 vs. \(2 (75 ) = 150\).

Time = 0.16 (sec) , antiderivative size = 278, normalized size of antiderivative = 3.09

method result size
parts \(\frac {A \left (\sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a -4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{2 d \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {\tan \left (d x +c \right )}}-\frac {i B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}}\) \(278\)
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (i B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+i A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-4 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+4 A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )\right )}{2 d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right ) \sqrt {-i a}}\) \(430\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (i B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+i A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-4 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+4 A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )\right )}{2 d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right ) \sqrt {-i a}}\) \(430\)

[In]

int((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2*A/d*(2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x
+c)+I))*tan(d*x+c)*a-4*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))*(a*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(
1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/tan(d*x+c)^(1/2)-1/2*I*B/d*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*ta
n(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(
1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 435 vs. \(2 (69) = 138\).

Time = 0.25 (sec) , antiderivative size = 435, normalized size of antiderivative = 4.83 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} d \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a}{d^{2}}} \log \left (-\frac {{\left (\sqrt {2} d \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )} - \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 4 \, \sqrt {2} {\left (i \, A e^{\left (3 i \, d x + 3 i \, c\right )} + i \, A e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{2 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*log((sqrt(2)*d*sqrt(-(-I*A^2 -
2*A*B + I*B^2)*a/d^2)*e^(I*d*x + I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x +
 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)) - sqrt
(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*log(-(sqrt(2)*d*sqrt(-(-I*A^2 - 2*A*B +
I*B^2)*a/d^2)*e^(I*d*x + I*c) - sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c)
+ 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)) - 4*sqrt(2)*(I
*A*e^(3*I*d*x + 3*I*c) + I*A*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) +
 I)/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(2*I*d*x + 2*I*c) - d)

Sympy [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right )}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(3/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))/tan(c + d*x)**(3/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Non regular value [0] was discarded and replaced randomly by 0=[-74]Warning, replacing -74 by -81, a substi
tution vari

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}} \,d x \]

[In]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2))/tan(c + d*x)^(3/2),x)

[Out]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2))/tan(c + d*x)^(3/2), x)